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HEAT OR MASS TRANSPORT TO POORLY STREAMLINED BODIES 

Yu. A. Buevich and A. E. Shul'meister UDC 536.244 

The heat and mass transfer between a stream and a streamlined body is examined 
taking into account the formation of turbulent fluid-filled zones behind the body. 

As the stream velocity increases, the unseparated laminar flow around a body is replaced 
by separation, a vortex zone forms near the root domain of the body in which the mixing inten- 
sity increases as the Reynolds number grows. If the Re is not very large, the impurity heat 
or mass transfer to the body is determined entirely by the process of convective heat conduc- 
tivity or diffusion, where the magnitude of the local flow on the surface decreases rapidly 
with distance from the inflow point. In this case the main transfer is realized in the fron- 
tal domain of the body and the root domain does not take part in the transfer in practice. As 
the Re increases, and as turbulence intensifies within the vortex zone, the role of this lat- 
ter grows considerably and can become dominant for sufficiently large Re [i, 2]. 

The total heat for mass flux to the body is evidently comprised of flows in the laminar 
boundary layer domain up to its separation from the body surface and in the turbulized domain 
after separation. The transfer mechanisms differ substantially in the domains mentioned, and 
the construction of appropriate models for each requires the involvement of methods of differ- 
ent kinds. The transfer to the body frontal domain reached by the laminar boundary layer, and 
to the root domain adjoining the turbulized fluid is considered separately below. For defi- 
niteness, we shall speak about the stationary diffusion of impurity mass at constant concen- 
trations far from the body and at its surface, but all the results to be obtained will be val- 
id for heat transfer also. 

Transfer to the Frontal Domain 

The diffusion flow near the surface around which the laminar boundary layer flows can be 
found from the solution of the convective diffusion equation. If Pe>> 1 was assumed, the 
known method of a thin diffusion boundary layer [i] is naturally used for the approximate so- 
lution. For Sc>> 1 this layer is built-in into the hydrodynamic, for Sc<< 1 on the other 
hand, the hydrodynamic boundary layer is built-in into the diffusion layer. The fluid veloc- 
ity within the diffusion layer limits is evidently described by perfectly different relation- 
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Fig. i. Dependence of the relative local mass or 
heat transmission coefficient on ~ at the frontal 
surface of a cylinder (a) and a sphere (b) for 
Sc ~ I (i) and St<< I (2). 

ships in these cases, and hence they should also be considered separately. As indicative ex- 
amples, we consider below the transfer to a cylinder with axis oriented normally to the fluid 
flow, and to the sphere. 

The Case St>> I. Using the approximate solution of the boundary-layer equation for a 
cylinder, we write the approximate expressions for the tangential velocity component at the 
surface and for the stream function [3]: 

i n  w h i c h  o n l y  t h e  p r i n c i p a l  t e r m s  o f  t h e  e x p a n s i o n  i n  t h e  c o o r d i n a t e  y n o r m a l  t o  t h e  s u r f a c e  
and t h e  two f i r s t  t e r m s  o f  t h e  e x p a n s i o n  i n  t h e  c o o r d i n a t e  x m e a s u r e d  a l o n g  t h e  s t r e a m l i n e  a t  
t h e  s u r f a c e  f r o m  t h e  s t r e a m  i n f l o w  p o i n t  ~ =  0 a r e  r e t a i n e d .  S t r e a m  s e p a r a t i o n  a t  ~ = ~ , ~ 9 1 , 5  ~ 
c o r r e s p o n d s  t o  t h e  a p p r o x i m a t i o n  ( 1 ) .  

Considering just the self-similar solutions of the convective diffusion equation in the 
thin diffusion layer approximation, we obtain 

c ~ exp  - -  t 3 dt  ( 2 )  
1,17 ,, 

0 

where  we h a v e  i n t r o d u c e d  t h e  s e l f - s i m i l a r  v a r i a b l e  

Re ' / 2Sc l / !  . _ / ~ "  \ - , / ~  g 

0 

The local diffusion stream to the surface is 

] ..~ 0,816 (DcdR) F (q~) 17e I/2 Sc ~/3. 

The function 

(3) 

(4) 

en \--]/3 
F (q$ = [q~ (1 - -  0,3918qoZ)l ' /2 (,l [t (1 - -  0,3918tZ)l~/2dt) 

0 

has been introduced in (3) and (4). 

The total flux to the frontal part of the cylinder (up to separation) is 

dl :" 2R j jd;9 ~ 2,40DcoRe 1/2ScI/s 
0 

(5) 

(6) 

and the corresponding Sherwood number is 
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Shl ~ O,76Rell2Sc 11a. (7) 

The dependence of the relative local mass elimination coefficient on the angle q0 is pre- 
sented in Fig. la. 

For the flow around a sphere we have instead of (i) [3] 

v ~ ,.~ ~ -  U f -~ , x = R (p , 

$ = 3  UR2 , /2 f  -sin(p, ( 8 )  
4 

f ((p) = ( 0 , 9 2 7 7 - -  o.3641(p~)(p, 

where (p=(p,~91.5 ~ again corresponds to flow separation. 

The solution of the convective diffusion problem being considered is again expressed in 
the form of (2), but 

Z = - - ~  ]/-~ Rel l2 Scl /a (f sm q.) t l2 o V f  slna/2(Pd(p) l/a (9) 

In this case the local diffusion flux is represented thus 

j ,~ 0.731 (Dco/R) F ((p) Re 1/2Sc 1 I3, 
(p 

F ((p) = [(p (1 - -  0,3925(p z) sin(pl 1 i2 (.f It (1 - -  0,3925t2)]  s/'-'sin 3/2tdt)  -1/a, 
0 

( I 0 )  

while the total flux to the frontal surface of the sphere is 

(p, 

J~ = 2nR z j' j sin (pd(p ~ 4,8DcoRRe 11z Sc 1/a, (11) 
0 

i.e., the corresponding Sherwood number is 

Shl ~ 0.78Reil2Sc I13 (12) 

The dependence of a/< a > on (p is presented in Fig. lb. 

The Case Sc<< I. In this case the diffusion boundary layer is considerably thicker than 
the hydrodynamic, i.e., we actually deal with convective diffusion to a body around which a 
potential ideal fluid stream flows. Problems of this kind (including nonstationary ones) were 
examined in [4-7]. For the local mass flux to a cylinder we have on the basis of [6, 7] 

Correspondingly, 

In place of (13) and 

] ~ 0,798 Dco sin(p 
R (1--~g-o-sos~)l! '-> RelDScl/2" (13) 

J1 ~ 3,19DcoRel/2Sc 1/2, Shl ~ 1,02Re1DSc 1/2 �9 

(14) ,  we have f o r  a s p h e r e  [6, 7] 

(14) 

] ~ 1,197 Dco sin2(p 
R (2 -- 3cos(p + cos"(p) 1/2' 

J1 ~ 7,1DcoRRe q2Scl/2, Shl ~ 1.13Rel/2Sc 1/2. 

(15) 

(16) 

The dependence of ~/< ~ > on ~ for a cylinder and sphere are also presented in the figure 
for small Schmidt (or Prandtl) numbers. 

Therefore, as the number Sc increases from values much less than one to values greatly 
exceeding it, the dependence of the diffusion fluxes on Re does not change but on Sc weakens: 
the appropriate exponent diminishes from 1/2 to 1/3. 
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Relationships of the form (13) and (15) had been used earlier to describe the transfer 
to the whole surface of a streamlined body in application to heat exchange with liquid metal 
fluxes [5] and to heat and mass transfer with filtration streams [6, 7]. In the second case 
these relationships reflect reality adequately, but this is not so in the first case. Indeed, 
for the validity of the relationships mentioned in the root domain it is necessary that the 
thermal boundary-layer thickness be much greater than the size of the vortex zone that is of 
the order R, which contradicts the thin layer approximation being used. 

As is easy to see from Fig. I, as the number Sc (Pr) diminishes the mass (heat) flux dis- 
tribution on the frontal surface of a streamlined body becomes substantially more homogeneous, 
which is in agreement with the tendency noticed in [2], say. 

Transfer in the Root Domain 

Let us consider the vortex zone being formed behind the body to be filled with a fluid in 
a developed turbulent motion state, which reflects well the activity at high Reynolds numbers 
[3] when it is impossible to neglect transfer to the root part of the body surface more in 
comparison to the transfer to its frontal part [!, 2]. 

Since there is no sufficiently representative theory of turbulence as yet, it can be 
hoped to obtain a relationship, at this time, for the intensity of transfer which will be true 
just in order of magnitude. For this purpose it is necessary to use any of the existing semi- 
empirical models of near-wall turbulence. Such models were developed mainly in application to 
conditions realizable in a turbulent boundary layer or in a turbulent flow in channels. In 
the vortex zone behind a body the hydrodynamic conditions are substantially different. Conse- 
quently, we use here model representations from [8], which are not associated with any assump- 
tions about the nature of the flow at a distance from the surface. According to [8], the ef- 
fective coefficient of turbulent kinematic viscosity in proximity to the wall is expressed in 
the form 

(0dUi  (0dr) (17) 
0 0 

where ~ (y) is the turbulent kinematic viscosity at a distance y from the wall, determined in 
the usual way in terms of the effective values of the rms velocity fluctuations and mixing 
length realizable here, while T(y) is the characteristic "lifetime" of the vortices such that 
comparatively large vortices with T > T(y) cannot approach the wall to a distance less than y. 

Using the following approximation for the Lagrange correlation function 

R (t) ~ exp ( - -  #To (9)), (18) 

we obtain from (17) 

v' (g) ~ v~ (9) [ I  - -  exp ( - -  T (.q)ITo(9))l 2, ( 1 9 )  

where To(y) is the characteristic time scale for the vertices present at a distance y from the 
wall. Furthermore, it is assumed that T(y)/To(y) = y/A(y), where A(y) is the corresponding 
linear scale. It is clear that analogous relationships should hold even for the turbulent 
diffusion coefficients D'(y) and D~(y) and for the coefficients of turbulent thermal diffu- 

sivity. 

Let us note that the already sufficiently rough approximation (18), that results in (19), 
permits obtaining automatically [8] both the known semiempirical model of Van Driest [9] for 
the viscous and transition layers of the turbulent boundary layer, and the Shablevskii model 
[i0] for the turbulence miscibility domain. 

The solution of the stationary diffusion equation under the evident assumption that the 
transverse component of the concentration gradient is significantly greater than the longitu- 
dinal, and with turbulent and molecular transport taken into account under the conditions c = 
0 and y = O, has the form 

y 9 

c ~ ]  D-b Do[1--exp(--ylA)] z ~ ' j .  D +  D'(yIA) z 
0 0 

(20) 
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The magnitude of the diffusion flow on the surface j, which can certainly depend on the 

coordinate x, is determined from the second boundary condition c = co as y ~ ~. Therefore, 
the determination of j actually reduces to a problem in the representation of the quantities 
D~ and A for vortices at different distances from the surface. 

Let us introduce the characteristic thickness of the diffusion boundary layer in the root 
6, and the minimal dimension I of the turbulent vortices for which the order equality is valid 

(see [i], for example): 

~""~314~I1~U--314. (21) 

The main r e s i s t a n c e  to  the  mass t r a n s f e r  p r o c e s s  i s  e v i d e n t l y  c o n c e n t r a t e d  in  the  domain y ~  ~. 

Let ~<< I. Then the diffusion boundary layer lies entirely within the hydrodynamic vis- 
cous sublayer, where the characteristic normal component of the velocity fluctuation has the 
order Uy/1 in conformity with the known hypothesis of L. D. Landau [i], and the mixing length 
is of the order y, i.e., D~ ~ Uy2/%. It is clear that in this case A ~ I. Consequently, by 
solving (20) and requiring that the limit c(y) agree with co as y + = we obtain with (21) tak- 
en into account 

] ~ Co ( ~ ) 1 / 4  D3/4~11Z DCoR ~e13/16Scl/4" (22) 

Now, let 6 ~ I. In this case, as before, A ~ k but D~ ~ Uy. After simple calculations 
there follows from (20) and (21): 

] N CO Ul13 --D2/3 Dc~ ~ eS/6Sct/3. (23) 
AZ/3 R 

If 6>> I, but the outer boundary of the diffusion boundary layer is within the transition 
sublayer, then vortices that are greater than the minimal but are considerably smaller than 
the greatest, comparable in size to R, play the main role in mass transfer. In this case, as 
before, D~ ~ Uy, but b ~ UT, where z ~ v2/E ~ (~R)~/2U-3/2 is the characteristic vortex life- 
time, which does not differ too radically from the minimal (here v is the characteristic veloc- 
ity of such vortices, and ~ is the specific dissipation of the turbulence energy). Then A 
1273R ~/~ and we obtain by the previous method from (20) and (21) 

D 2/3 Dco Re2/SSct/S. (24) ]~c~ A 2/3 R 

Finally, for 6>> I, when the mass transfer is due to fluctuations of the large-scale vor- 
tices, D~ ~ UR and A ~ R. In this case 

D 1/2 D~o Rel/~Scl/2 ]~c~ A 1/2 ~ R (25) 

Let us note that it was actually assumed in the derivation of (22)-(25) that the exchange 
outside the diffusion layer is sufficiently intense so that the substance concentration at its 
outer boundary would be in agreement with its value in the undepleted flow. 

The thickness ~ of the diffusion layer can be estimated from the condition that the molec- 
ular and turbulent diffusion coefficients would be identical in order of magnitude for y = 6. 
Hence 

8/R ~ (Re. Sc)-L (26) 

The order inequality 6 ~<X here denotes D <~UX, i.e., 

Sc-Rel/4 ~ I, (27) 

while 6 ~ A ~ I:/3R I/3 is equivalent to D >~UA, which yields 

Sc.Re 1/2 ~ 1. (28) 

Relationships (26)-(28) permit comprehension of the vaJid individual dependences (22)- 
(25), for which there are specific intervals of variation in the criteria Re and Sc, and for 
which their general form can be written: 
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J~ = C2S2 (Dco/R) Re'~Sc ~, Sh~ = C2Rd~Sc ~, (29) 

where C2 is a factor on the order of one that depends on the shape of the streamlined body, 
$2 is the area of the root part of its surface. As Re and Sc increase, the factor m grows 
from 1/2 to a value equal to approximately 0.8, while the factor n drops from 1/2 to 1/4. If 
Sc<< i, Re. Sc ~ i, then the dependence of Sh2 on Re and Sc is the same in its structure as is 
the analogous dependence for Shl. 

The relationships (7), (12), (14), and (16) from the frontal domain of the body and (29) 
for the root permit construction of semiempirical formulas of the form 

Sh = 1 + slC1Rel/2Sc ~ + s~C2Re'~Sc ~ (30) 

for the Sherwood number referred to the whole body. The coefficients CI, k, m, and n for bod- 
ies Of simple shape can here be considered known, while the coefficient C2 should be deter- 
mined experimentally. During such a determination of C2 only data of experiments conducted 
for Re and Sc from ranges corresponding to the m and n values under consideration should be 
used. This requirement was not satisfied, for instance, in obtaining the empirical formula 
of B. D. Katsnel'son and F. A. Timofeeva for the heat transfer of a flow to a spherical body 
when test data were used that referred to the most diverse values of Sc (Pr) [2]. 

With the exception of the case Re. Sc ~ i, the exponent m > 1/2, i.e., for sufficiently 
large Re the role of the root domain in mass or heat transfer actually becomes governing, as 
much experimental data indicate [i, 2]. 

Results obtained above for Sc ~i are confirmed fairly by data on the heat transfer be- 
tween a body and a stream including the mentioned empirical Katsnel'son--Timofeeva formula. 
For Sc>> 1 the theory of transfer to a solid surface from a turbulized fluid is confirmed in 
qualitative respects by the I. A. Bagotskaya tests, for example, on the diffusion to a rotat- 
ing disc electrode in electrochemical reactions of oxygen reduction and hydrogen evolution, 
as well as by the experiments of A. I. Fedorova and G. L. Vidovich on the diffusion to a mov- 
ing flat plate for the reaction of cathodic reduction of iodine, described in detail in [i]. 
In particular, a completely single-valued deduction was made about the increase in the expo- 
nent as a function of Sh and Re as Re increased from 0.5 to a value on the order of 0.8 or 
even higher. 

NOTATION 

Ci, coefficients in (30); c, concentration; co, value of c at a distance from the body; 
D, molecular diffusion coefficient; D~, D', turbulent diffusion coefficients without and with 
taking account of the influence of the solid surface; F, f, functions determined in (5), (i0) 
and in (2), (8); J, j, total and local diffusion flows; k, m, n, exponents in (29) and (30); 
R, cylinder or sphere radius; R(t), Lagrange correlation function; S, body surface area; s, 
fraction of the area; To, T, characteristic time scales; T, fine vortex time scale; U, flow 
velocity; %, tangential velocity component near the body surface; x, y, tangential and nor- 
mal coordinates; ~, coefficient of heat or mass transfer; &, characteristic linear turbulent 
scale; 6, diffusion layer thickness; X, minimal vortex size; v, molecular kinematic viscosity; 

! ! ~o, ~ , turbulent kinematic viscosity without and with the influence of the surface taken into 
account; 9, the angular coordinate; ~, stream function; Re = UR/v; Sc = v/D; Pe = Re. Sc; Sh = 
JR/DcoS; the subscripts 1 and 2 refer to the frontal and root parts of the body surface. 
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PRECIPITATION OF A CLOUD OF HEATED PARTICLES ON 

A HORIZONTAL PLANE 

GI M. Makhviladze and O. I. Melikhov UDC 532.529:536.46 

The precipitation of a cloud of heated monodisperse particles in a field of exter- 
nal force is numerically investigated. 

The nature of the motion of a cloud of particles in an infinite medium under the action 
of an external force (gravity) depends on the degree of hydrodynamic interaction between the 
particles, which is mediated by the carrier phase [1-3]. If the particle concentration in 
the cloud is low, each particle moves like a solitary particle, independently of the others 
(the "filtration" regime). If the particle concentration is sufficiently high this regime 
gives way to the "entrainment" regime, where the medium between the particles is involved in 
the motion; the assembly of particles moves at a speed that exceeds the speed of fall of a 
single particle. 

In [4, 5] the motion and precipitation of a cloud possessing plane symmetry (in a direc- 
tion perpendicular to the action of the external force one of the dimensions of the cloud was 
much greater than the other) were examined. A numerical solution of the unsteady two-dimen- 
sional equations of motion of a two-phase medium showed that the interaction of the cloud with 
the precipitation surface depends significantly on the regime of motion. In the filtration 
regime all the particles move in straight trajectories, perpendicular to the precipitation 
plane, and fall on this plane in the region of initial projection of the cloud; the final dis- 
tribution of the precipitated particles does not depend on the initial height of the cloud. 
Entrainment motion of the cloud produces a large,scale vortical flow of the carrier medium in 
the form of two symmetric cylindrical eddies, which increase in size (the analog of this solu- 
tion in the case of axial symmetry is a vortical ring -- a torus). In the plane of symmetry 
the gas moves downward in the direction of the external force and on the periphery it rises. 
The particlesare involved in this motion and become concentrated in the cores of the eddies; 
thus, most of the particles move in directions perpendicular to that of~the external force. 
This effect becomes more pronounced as the cloud approaches the precipitation plane owing to 
the spreading of the gas along it, which causes additional sideways transport of particles. 
This leads to precipitation of some particles at great distances from the plane of symmetry, 
exceeding the initial radius of the cloud~ 

In [4,5] the precipitation process was Considered in the isothermal case, where the gas 
and particle temperatures are equal. In this paper we examine, in a plane formulation, the 
precipitation of a cloud of particles in the nonisothermal case, where the initial particle 
temperature exceeds thetemperature of the surrounding gas. At the initial time a cold gas, 
in static equilibrium in a field of external force, contains a motionless cloud of heated sol- 
id or liquid spherical particles (a monodisperse aerosol). In describing the motion Of the 
disperse medium we adopt the usual assumptions of mechanics of heterogeneous media [6], and 
regard the gas and particles as two interpenetrating and interacting continua. We consider 
systems in which the volume fraction of the particles and the ratio of the true gas and par- 
ticle densities are small; collisions, breakup, and evaporation Of the particles are insignif- 
icant; viscous dissipation of energy isnegligible; the temperature is assumed constant through- 

Institute of Mechanics Problems, Academy of Sciences of the USSR, Moscow. 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 2, pp. 238-244, August, 1983. 
ticle submitted May 24, 1982. 

Translated 
Original ar- 

882 0022-0841/83/4502-0882507.50 �9 1984 Plenum Publishing Corporation 


